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Abstract: In order to evaluate crop condition, remote sensing technics together with regression models
or machine learning regression algorithms (MLRA) are usually used. Historically Vegetation Indexes (VI) are
employed coupled with regression models, and more recently MLRA are used, to estimate a given biophysical
parameter. For the evaluation of fresh and dry biomass from winter rapeseed crop, the Automated Radiative
Transfer Models Operator (ARTMO) package with Sentinel-2 images and ground data are used. The sampled
pixels from Sentinel-2 images are evaluated as a single pixel and as averaged with the 8 closest. In order to
better detect bare soil, samples from bare soil were included.

The preliminary results show that the bare soil samples add to the determination power of the models
and single pixel models give better results than the averaged pixels.

Although the MLRA and the regression models with VI have similar goodness-of-fit measures (i.e. MAE,
RMSE, NRMSE, R?), the resulting image of estimated fresh and dry biomass are better fitted for MLRA and
almost not fitted with the regression models with VI. Because of the difficulties to interpret the results of those
methods, of particular interest could become the MLRA that include uncertainty estimation, as the Gaussian
Progress Regression Algorithm.

This approach allows a quick and broad view of the relation between remote sensed and ground data.
As well as identify locally related correlations between the remote sensing and biophysical parameters.
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Knroyoeu dymu: ussnuyaHe Ha 6uoghusuyHU napamempu, buomaca, panuua, eMnupPUYHU peepecuoHHU
modernu, MmemoOu 3a MalWUHHO oby4eHue

Pe3rome: [JucmaHyuoHHume memodOu Ha HabnrodeHue u3ron3gam pespecuoHHU modenu unu
aneopummu Ha MawuHHO oby4yeHue (MMO) 3a oueHka Ha CbCMOSIHUEMO Ha rocesu. Micmopudecku ce
u3rionizeam eezemauyuoHHU UHOekcu (BU) 3aedHO ¢ pespeCuoHHU MOoOesiu, a 8ce Mo-4ecmo ce u3ron3sam
MMO, 3a da ce oueHu dadeH buoghusuydeH napamemnbp. 3a oueHkama Ha ceexa U cyxa buomaca Ha 3UMHa
panuua ce usrnosiea cogpmyepHomo npunoxeHue ARTMO 3aedHo ¢ u3zobpaxeHuss om Sentinel-2 u HaseMHU
OaHHU. MsmepeHume nukcenu om usobpaxeHusi Ha Sentinel-2 ce oueHsisam kamo eOQUHUYEH MUKCes U Kamo
ocpedHeHu ¢ 8-me Haul-6nusku. 3a da ce modenup no-dobpe yyacmbyu om rnioysa 6e3 pacmumenHocm, bsixa
8KJ/IHOYEHU npobu om 2ona rnoysa.

lpedsapumenHume pe3ynmamu roka3eam, 4e modesiume ¢ rno4yeeHu npobu nodobpsisam pe3dynma Ha
modeniume, ame3u ¢ e0UHUYHUME rnuKkcesiHU 0asam rno-006pu pe3yrimamu om ocpeGHeHUMe ruKcesu.

Makap yve MMO u pezpecuoHHume modenu ¢ BU umam cxodHu napamempu 3a epewka u cxodcmeo
(MAE, RMSE, NRMSE, R?, nony4yeHume u3obpaxeHue Ha ceexama u cyxa buomaca cned rnpurnazaHe Ha
modena e rno-0obpe uspaseHo ¢ MMO u noumu He e ¢ peapecuoHHU modenu ¢ BU. MNMopadu mpydHocmume npu
UHmMeprnpemupaHemo Ha pesynmamume om me3u Modesiu, om ocobeH uHmepec Moxe 0a ce rpesbpHam
modernume, KoOumoO 8K/4Yeam oueHka Ha cuaypHocm, kamo Gaussian Regression Algorithm Progress.
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lpednoxeHusm memod dasa 6bpP3 U WUPOK rozied 8bpXy 8pb3kama Mex0y HasemMHume OaHHUME U mesu om
ducmaHyuoHHo HabrrodeHue u 3emsma. OceeH mosa rosgorsisisa Oa ce udeHmuchuyupam Ha JI0KaslHO HUB0
Kopenayuu mex0y ducmaHUUuoHHU HabnodeHus u buogusuyHume napamempu.

Introduction

Part of the winter rapeseed crop monitoring consists in evaluation of the crop condition before
and after winter. In this period the rapeseed crop develops its leaves and biomass. Therefore, quick
and accurate retrieval of fresh or dry biomass is of importance for remote sensing monitoring of the
winter rapeseed crops. This study presents biomass retrieval from Sentinel-2 images by parametric
and non-parametric models

Materials and Method

Study area, description of the winter rapeseed fields and ground data

This study was carried out in East Danube plain in Bulgaria, over one growing season, from
September 2017 to July 2018, on three mass fields sown with different hybrids of winter rapeseed,
Fig. 1. The area is mostly flat, the soil has mainly sandy loam texture, the climate in this region
is Moderate Continental with cold winters and hot summers (mean daily temperature 10.2 °C), and an
annual cumulative rainfall of 540 mm.

Sentinel-2: L2A_T35TNJ_2017 11287090321 N

0 250 500 1000 Meters

Fig. 1. Study area and winter rapeseed fields

Before the field campaign, the sample locations were identified. A literature review has shown
a set of Vegetation Indices (VI) well correlated with important biophysical parameters for winter
rapeseed, Table 1. Those indices were calculated for the studied rapeseed fields on the Sentinel-2
image from 12.11.2017, downloaded from Copernicus Data Open Hub in 2A product
(https://scihub.copernicus.eu/dhus/#/home). The sample locations were positioned in order to capture
as much as possible to heterogeneity of the fields in terms of biophysical parameters identified in
Table 1 on the VI maps.
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Table 1. Vegetation Indices used to position the location of the samples for the field campaign

Biophysical parameter Vegetation Index Formulation Reference
AGB, biomass, number of RVI (Piekarczyk, Wojtowicz
plants per square meter (Ratio Vegetation Index)  NIR/Red and Wojtowicz, 2006)

after emergence

(1+L)(NIR-
OSAVI Red)/(NIR+Red+L)
AGB, biomass (Optimized soil adjusted) (L =0.16) (Han et al., 2017)
SAVI
(Soil adjusted vegetation  (1+L)(NIR-Red) / (Hatfield and Prueger,
LAI index ) (NIR+Red+L) (L = 0.5) 2010)
(Clevers and Gitelson,
Canopy chlorophyll and ClredEdge R783/R705-1 2013)
nitrogen
EVI=G x ((RNIR-
EVI (The enhanced Rred)/(RNIR+C1 x Rred-
Plan height vegetation index) C2 x Rbleu +L)); G=2.5; (Bartoszek, 2014)
Cl1=6; C2=7,5; L=1
VARIgreen (Visible
Atmospherically Resistant (R550 — R670)/(R550 +
Vegetation Fraction Indices) R670) (Fang et al., 2016)
Number of plants per NDVI (Normalized (Piekarczyk, Wajtowicz
square meter after Difference Vegetation (NIR-Red)/(NIR+Red) and Wojtowicz, 2006)
emergence Index)

During each field campaign, one before winter and one after winter, a sample was identified
by its position measured by consumer hand held GPS device. The Aboveground Fresh Biomass
(FBM) was harvested as described by (Cihlar et al.,, 1987) from an area of 1m? and all plants cut,
stored in paper bags and transported to a laboratory. In the laboratory the same day, each sample of
FBM is weighted. The dry biomass (DBM) is obtained from a sample of the FBM, within 24 hours, by
oven-drying at 105 °C until constant weight. Each field campaign produced 15 measurements. In total
30 samples of FBM and DBM were registered for the study.

Because of the meteorological conditions, some of the plants started growing immediately
after sowing but many had more than a month delay. Particularly the plots P2 and P3 were with plants
in very different phonological phases, from BBCH13 to BBCH19 (Weber, Bleiholder and Lancashire,
1991), during the before winter field campaign. This difference in the phonological phase was
completely reduced after winter, where all plots were at BBCH50/BBCH51. One sample during before
winter campaign was sampled from an area with plants in BBCH19 and it was clearly an outlier
compare to the other samples, but not regarding the field condition.

Table 2. Characteristics of the fields, dates of the selected Sentinel-2 images, field campaigns, and the
number of sampling locations per plot

Before Winter After Winter
Field Area Planting  Sowing rate Sampling Sampling Sentinel-2  Sampling Sentinel-2
Code (ha) Date plant/ m* locations date image date image
(product) (product)
P1 137 3.09.2017 80 9 23.11.2017 29.11.2017 1.04.2018 03.04.2018
4.09.3017 2A) (2A)
5.09.2017
P2 10 20.08.2017 56 3 23.11.2017 29.11.2017 1.04.2018 03.04.2018
(2A) (2A)
P3 15 4.09.2017 76 3 24.11.2017 29.11.2017 1.04.2018 03.04.2018
(2A) (2A)
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Remote sensing images and data

For this study all spectral bands of 10 m and 20 m spatial resolution from Sentinel-2 are used.
It provided 10 spectral bands from 490 nm to 2190 nm, resampled at 10 m special resolution. The
selected Sentinel-2 images for the study were the closest available cloud-free on the studied area and
closest to the dates of field campaign (Table 2).

Models calibration and evaluation

The biomass retrieval was carried out with parametric and non-parametric regression methods
(Verrelst et al., 2015) with the Automated Radiative Transfer Models Operator (ARTMO) package
(http://ipl.uv.es/artmo/). The aim was to identify the best method for retrieval of FBM and DBM for
rapeseed and study the influence on the models of two main aspects:

¢ By adding 3 samples of bare soil to each ground data campaign. In total 6 more samples to
the 30 of vegetation/soil from the ground data campaign. It was expected to have better fitted
model when adding bare soil data.

¢ By averaging the values of the 9 closest pixels to the sample location of the remote sensed
image. As the smallest pixel size of Sentinel-2 images is 10m? and the position of the sample
during the campaign was measured with a consumer GPS device, the sample location could
have been closest to the edge of the pixel or even on the edge of a neighbor pixel.

Another aspect that was studied is the influence of the outlier sample from the before winter
field campaign. The tested scenarios (different input data for the models) are: 1) All biomass (30)
samples with remote sensing data from 1 pixel. 2) All biomass and 6 bare soil (36) samples with
remote sensing data from 1 pixel. 3) All biomass (30) samples with remote sensing data from 9 pixels.
4) All biomass and 6 bare soil (36) samples with remote sensing data from 9 pixels. 5) All biomass
without the outlier (29) samples with remote sensing data from 1 pixel. 6) All biomass without the
outlier and 6 bare soil (35) samples with remote sensing data from 1 pixel. 7) All biomass without the
outlier (29) samples with remote sensing data from 9 pixels. 8) All biomass without the outlier and 6
bare soil (35) samples with remote sensing data from 9 pixels.

The models were validated with leave-one-out cross-validation, because of the small sample
size. Even if FBM and DBM are highly correlated with Pearson’s correlation (r) of 0.99, both
biophysical variables were modeled.

The tested parametric regression methods consist in applying linear, exponential, logarithmic,
power and polynomial fitting functions to VI of 2 or 3 bands, as described in  Table 1, and one
additional VI of three bands, 3BI=(B1-B2)/(B1+B3). All possible fitting functions are executed with all
possible VI and all bands. For each test scenario the best performing model was recorded, as well as
the best OSAVI and SR ones.

The tested non-parametric models are: Least squares linear regression (LSLR), Principal
components regression (PCR), Partial least squares regression (PLSR), Kernel Ridge Regression
(KRR), Gaussian Progress Regression (GPR) and the Variational Heteroscedastic variant of the
Gaussian Progress Regression (VHGP). Some of the models, such as GPR, perform uncertainty
evaluation. The GPR and VHGP calculate a Coefficient of Variation (CV = o/uy), where o is the
Standard Deviation (SD) around the estimated biomass and p the mean estimated biomass. CV
provides relative uncertainty of the estimated parameters in %.

Results and discussion

All models were ranked on NRMSE (Normalized RMSE in %, NRMSE=100*RMSE/range of
biomass measured). The NRMSE was selected because it is not influenced by the data unit (Richter
et al.,, 2012) and therefore can compare accuracy across different parameters. The approach that is
adopted in this study is to first for each scenario select the best ranked model in term of NRMSE.
Then each model is applied to both selected remote sensing images and linear regressions function
performed between the simulated and measured values (all biomass measures with the outlier and
without the bare soil additional samples). The results from the correlations that have R? > 0.514 are
considered significant at a = 0.05, because of the small sample size (Rogerson, 2001).

The best performing models, ranked by NRMSE, Table 3, are for the parametric and non-
parametric models the ones with the scenario 8. However, when those models were applied to the
remote sensing images and linear regressions function performed between the simulated and
measured values, they had a poor fit (Fig. 2).
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Table 3: Best performing models, ranked by NRMSE

VI FF Bands MAE RMSE RRMSE NRMSE % R R2
FBM_SI_BareSoil_9Pixels
NoOutliner 3Bl polynomial  490;705;865 226 288 34 10 0,94 0,88
MLRA_BareSoil_9Pixels_
NoOutliner ML_KRR_FBM KRR 216 298 35 11 0,93 0,87

$2_03042018_FBM_S|_BareSoil_9Pixels_NoOutiner
R2= 047001 R2= 04856

Intercept = 88353 Intercept = 72164

Slope = 056551 * Slope = 056016
P =00047846 % P =0,0038503

Simulated FBM (gim2)
tod FBM (g/m2)

Simi

Measured FBM (gim2)

MLRA_BareSoil_9Pixels_NoOutiner_S2_03042018_ML_KRR_FBM

Measured FBM (g/m2

Fig. 2. Best performing models, ranked by NRMSE, applied to the remote sensing images

and linear regressions function performed between the simulated and measured values

There was not a parametric model that provided satisfactory results for the before winter
retrieval. Neither of the models achieve an error threshold under 10% that is the typical remote

sensing end user requirements (Caicedo et al., 2014).

Therefore, a different approach was followed by trying to find the best model that gives good
result when applied to the remote sensing images. Following this approach the, best results were the
one with scenario 2, Table 4. The models applied to the remote sensing images (Fig. 3), show that the
lower the biomass the higher is the uncertainty. The comparison between both models and the
orthophoto obtained by and Unmanned Aerial Vehicle (UAV) with RGB camera shows good overall

estimation of the more and less vegetated area in the plots.

Table 4: Best Results by applying the model to the remote sensing image and evaluating the fit between the

Measured and Estimated values

NRMSE

Model Name Model Bands MAE RMSE RRMSE % R R2
MLRA_BareSoil_1Pixel_ML_GP_ 560;740;490;
DBM GPR 842 35 52 50 16 0,85 0,73
MLRA_BareSoil_1Pixel_ML_VHG 560;490;740;
P_FBM VHGP 842 333 474 54 17 0,83 0,69

R2
Test Name plot Intersept Slop
MLRA_BareSoil_1Pixel_S2_29112017_ML_GP_
DBM 0,89 16,81 0,71 1,65E-07
MLRA_BareSoil_1Pixel_S2_03042018_ML_GP_
DBM 0,73 57,08 0,70 5,23E-05
MLRA_BareSoil_1Pixel_S2_29112017_ML_VHG
P_FBM 0,84 170,36 0,65 1,36E-06
MLRA_BareSoil_1Pixel_S2_03042018_ML_VHG
P_FBM 0,71 529,47 0,67 7,95E-05
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Fig. 2. Estimated Fresh and Dry biomass and Coefficient of Variance (CV) for the models
with highest R? Plot

Conclusion

Both, parametric and non-parametric, models perform well for the period after winter when

there is much more biomass and the bare soil is less visible than before winter. Nothing is gained by
averaging the closest 9 pixels to the sample location from the remote sensing image and adding bare
soil samples in the model increase its performance. Even if according to the NRMSE the models that
exclude the outlier perform better than the ones with the outlier, when applied to the remote sensing
maps they give poorer results. This is probably because even if the outlier stands out compare to the
other samples, it was not an isolated event in two of the three studied plots. By including the outlier
into the model calibration, it gives better representatively of the actual field data. The best results are

with the GPR models and it is in accordance with study of Caicedo et al., 2014.

304



Acknowledgment

This project is supported by Research Grant Award Ne [O®HI1-17-43/26.07.2017 from the
Bulgarian Academy of Sciences and it is done with the collaboration of Prof. E. Rumenina.

References:

1. Bartoszek, K. (2014) ‘Usefulness of MODIS data for assessment of the growth and development of winter
oilseed rape’, Zemdirbyste-Agriculture, 101(4), pp. 445-452. doi: 10.13080/z-a.2014.101.057.

2. Caicedo, J. P. R., Verrelst, J., Mufioz-mari, J., Moreno, J. and Camps-Valls, G. (2014) ‘Toward a
Semiautomatic Machine Learning Retrieval of Biophysical Parameters’, EEE JOURNAL OF SELECTED
TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 7(4), pp. 1249-1259.

3. Cihlar, J., Dobson, M. C., Schmugge, T., Hoogeboom, P., Janse, A. R., Baret, F., Guyot, G., Le Toan, T. and
Pampaloni, P. (1987) ‘Procedures for the description of agricultural crops and soils in optical and
microwave remote sensing studies’, International Journal of Remote Sensing, 8(3), pp. 427—-439. doi:
10.1080/01431168708948651.

4. Clevers, J. G. P. W. and Gitelson, A. A. (2013) ‘Remote estimation of crop and grass chlorophyll and nitrogen
content using red-edge bands on Sentinel-2 and -3’, International Journal of Applied Earth Observations
and Geoinformation. Elsevier B.V., 23, pp. 344-351. doi: 10.1016/j.jag.2012.10.008.

5. Fang, S., Tang, W., Peng, Y., Gong, Y., Dai, C., Chai, R. and Liu, K. (2016) ‘Remote Estimation of Vegetation
Fraction and Flower Fraction in Oilseed Rape with Unmanned Aerial Vehicle Data’, Remote Sensing,
8(416), pp. 1-19. doi: 10.3390/rs8050416.

6. Han, J., Wei, C., Chen, Y., Liu, W., Song, P., Zhang, D., Wang, A., Song, X., Wang, X. and Huang, J. (2017)
‘Mapping Above-Ground Biomass of Winter Oilseed Rape Using High Spatial Resolution Satellite Data
at Parcel Scale under Waterlogging Conditions’, Remote Sensing, 9(3), p. 238. doi: 10.3390/rs9030238.

7. Hatfield, J. L. and Prueger, J. H. (2010) ‘Value of using different vegetative indices to quantify agricultural crop
characteristics at different growth stages under varying management practices’, Remote Sensing, 2(2),
pp. 562-578. doi: 10.3390/rs2020562.

8. Piekarczyk, J., Wéjtowicz, M. and Wéjtowicz, A. (2006) ‘ESTIMATION OF AGRONOMIC PARAMETERS OF
WINTER OILSEED RAPE FROM FIELD REFLECTANCE DATA', Acta Agrophysica, 8(1), pp. 205-218.

9. Richter, K., Atzberger, C., Hank, T. B. and Mauser, W. (2012) ‘Derivation of biophysical variables from Earth
observation data : validation and statistical measures’, Journal of Applied Remote Sensing, 6(1), pp. 1-
24. doi: 10.1117/1.JRS.6.063557.

10. Rogerson, P. A. (2001) Statistical method for Geography. First edit. London: Sage Publications.

11. Verrelst, J., Camps-Valls, G., Muiioz-Mari, J., Rivera, J. P., Veroustraete, F., Clevers, J. G. P. W. and Moreno,
J. (2015) ‘Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A
review’, ISPRS Journal of Photogrammetry and Remote Sensing. International Society for
Photogrammetry and Remote  Sensing, Inc. (ISPRS), 108, pp. 273-290. doi:
10.1016/j.isprsjprs.2015.05.005.

12. Weber, Bleiholder and Lancashire (1991) ‘Echelle BBCH des stades phénologiques du colza (Brassica napus
L. ssp napus)’.

305



